Flux regulation of cardiac ryanodine receptor channels

نویسندگان

  • Yiwei Liu
  • Maura Porta
  • Jia Qin
  • Jorge Ramos
  • Alma Nani
  • Thomas R. Shannon
  • Michael Fill
چکیده

The cardiac type 2 ryanodine receptor (RYR2) is activated by Ca2+-induced Ca2+ release (CICR). The inherent positive feedback of CICR is well controlled in cells, but the nature of this control is debated. Here, we explore how the Ca2+ flux (lumen-to-cytosol) carried by an open RYR2 channel influences its own cytosolic Ca2+ regulatory sites as well as those on a neighboring channel. Both flux-dependent activation and inhibition of single channels were detected when there were super-physiological Ca2+ fluxes (>3 pA). Single-channel results indicate a pore inhibition site distance of 1.2 +/- 0.16 nm and that the activation site on an open channel is shielded/protected from its own flux. Our results indicate that the Ca2+ flux mediated by an open RYR2 channel in cells (approximately 0.5 pA) is too small to substantially regulate (activate or inhibit) the channel carrying it, even though it is sufficient to activate a neighboring RYR2 channel.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trimeric intracellular cation channels and sarcoplasmic/endoplasmic reticulum calcium homeostasis.

Trimeric intracellular cation channels (TRIC) represents a novel class of trimeric intracellular cation channels. Two TRIC isoforms have been identified in both the human and the mouse genomes: TRIC-A, a subtype predominantly expressed in the sarcoplasmic reticulum (SR) of muscle cells, and TRIC-B, a ubiquitous subtype expressed in the endoplasmic reticulum (ER) of all tissues. Genetic ablation...

متن کامل

Ryanodine receptors, voltage-gated calcium channels and their relationship with protein kinase A in the myocardium.

We present a review about the relationship between ryanodine receptors and voltage-gated calcium channels in myocardium, and also how both of them are related to protein kinase A. Ryanodine receptors, which have three subtypes (RyR1-3), are located on the membrane of sarcoplasmic reticulum. Different subtypes of voltage-gated calcium channels interact with ryanodine receptors in skeletal and ca...

متن کامل

Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes.

In skeletal muscle, dihydropyridine receptors are functionally coupled to ryanodine receptors of the sarcoplasmic reticulum in triadic or diadic junctional complexes. In cardiac muscle direct physical or functional couplings have not been demonstrated. We have tested the hypothesis of functional coupling of L-type Ca2+ channels and ryanodine receptors in rat cardiac myocytes by comparing the ef...

متن کامل

Structure of Cardiac T-Tubules

action potential through the heart. During the cardiac action potential, Ca2+ enters each cardiac myocyte through L-type Ca2+ channels [as the Ca2+ current (ICa)] and activates adjacent Ca2+ release channels [ryanodine receptors (RyR)] in the membrane of the intracellular Ca2+ store, the sarcoplasmic reticulum (SR), causing Ca2+ release from the SR (5). Ventricular myocytes, which cause contrac...

متن کامل

Structure of Cardiac T-Tubules

action potential through the heart. During the cardiac action potential, Ca2+ enters each cardiac myocyte through L-type Ca2+ channels [as the Ca2+ current (ICa)] and activates adjacent Ca2+ release channels [ryanodine receptors (RyR)] in the membrane of the intracellular Ca2+ store, the sarcoplasmic reticulum (SR), causing Ca2+ release from the SR (5). Ventricular myocytes, which cause contrac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2010